TIOJ 1885:【IOI2015】Scales 斯克兒悠斯-一堆天平
TIOJ 1885:【IOI2015】Scales 斯克兒悠斯-一堆天平
題目大意:有 $6$ 顆編號 $1\sim 6$ 的石頭,每顆重量都不一樣,可以做四種詢問,第一種是問 $3$ 顆石頭中最重的,第二種是問 $3$ 顆石頭中最輕的,第三種是問 $3$ 顆石頭重量介在中間的,第四種是問石頭 $a,b,c,d$ 中,比 $d$ 重最輕的石頭,若都比 $d$ 輕,則回答最輕的。你最多只能用 $6$ 次詢問找出石頭的重量關係。
解法:很難直接想出一個簡單的策略,所以只能用電腦暴搜,總共有 $720$ 個排列,每次詢問會有 $3$ 種結果,相當於把這些排列分成 $3$ 份,如果某一份的大小太大,那就會詢問太多次 ,之後繼續遞迴就能建出要問的東西了。
$\text{Code:}$
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx,popcnt,sse4,abm")
#include <bits/stdc++.h>
#include "lib1885.h"
using namespace std;
#define ll long long
#define Waimai ios::sync_with_stdio(false), cin.tie(0)
#define FOR(x,a,b) for (int x = a, I = b; x <= I; x++)
#define pb emplace_back
#define F first
#define S second
const int MAX = 720;
array<int, 6> P[MAX];
int pos[MAX][7];
struct Tree {
int ty, a, b, c, d;
Tree *nxt[3];
Tree() {}
Tree(int ty, int a, int b, int c, int d = 0) : ty(ty), a(a), b(b), c(c), d(d) {}
tuple<int, int, int, int, int> id() {
return {ty, a, b, c, d};
}
};
Tree *root;
bool build(Tree *&t, vector<int> cur, int lim) {
if (cur.size() <= 1) return 1;
t = new Tree();
FOR (ty, 1, 3) FOR (i, 1, 6) FOR (j, i + 1, 6) FOR (k, j + 1, 6) {
*t = Tree(ty, i, j, k);
vector<int> vi, vj, vk;
bool f = 1;
for (int id : cur) {
int cp;
if (ty == 1) cp = min({pos[id][i], pos[id][j], pos[id][k]});
if (ty == 2) cp = max({pos[id][i], pos[id][j], pos[id][k]});
if (ty == 3) cp = pos[id][i] + pos[id][j] + pos[id][k] - min({pos[id][i], pos[id][j], pos[id][k]}) - max({pos[id][i], pos[id][j], pos[id][k]});
(pos[id][i] == cp ? vi : pos[id][j] == cp ? vj : vk).pb(id);
if (max({vi.size(), vj.size(), vk.size()}) > lim) {
f = 0;
break;
}
}
if (f) f &= build(t->nxt[0], vi, lim / 3);
if (f) f &= build(t->nxt[1], vj, lim / 3);
if (f) f &= build(t->nxt[2], vk, lim / 3);
if (f) return 1;
}
FOR (d, 1, 6) FOR (i, 1, 6) if (i != d) FOR (j, i + 1, 6) if (j != d) FOR (k, j + 1, 6) if (k != d) {
*t = Tree(4, i, j, k, d);
vector<int> vi, vj, vk;
bool f = 1;
for (int id : cur) {
int pi = pos[id][i], pj = pos[id][j], pk = pos[id][k], pd = pos[id][d], cp = 6;
for (int xp : {pi, pj, pk}) if (xp > pd) cp = min(cp, xp);
if (cp == 6) cp = min({pi, pj, pk});
(pos[id][i] == cp ? vi : pos[id][j] == cp ? vj : vk).pb(id);
if (max({vi.size(), vj.size(), vk.size()}) > lim) {
f = 0;
break;
}
}
if (f) f &= build(t->nxt[0], vi, lim / 3);
if (f) f &= build(t->nxt[1], vj, lim / 3);
if (f) f &= build(t->nxt[2], vk, lim / 3);
if (f) return 1;
}
delete(t);
return 0;
}
int main() {
int tt = Init();
array<int, 6> a;
iota(a.begin(), a.end(), 1);
FOR (i, 0, MAX - 1) {
P[i] = a;
FOR (j, 0, 5) pos[i][a[j]] = j;
next_permutation(a.begin(), a.end());
}
vector<int> all(MAX);
iota(all.begin(), all.end(), 0);
build(root, all, 243);
while (tt--) {
orderCoins();
vector<int> all(MAX);
iota(all.begin(), all.end(), 0);
Tree *cur = root;
while (all.size() > 1) {
int result;
auto [ty, a, b, c, d] = cur->id();
if (ty == 1) result = getLightest(a, b, c);
if (ty == 2) result = getHeaviest(a, b, c);
if (ty == 3) result = getMedian(a, b, c);
if (ty == 4) result = getNextLightest(a, b, c, d);
vector<int> tmp;
for (int id : all) {
int pi = pos[id][a], pj = pos[id][b], pk = pos[id][c];
if (ty == 1 && min({pi, pj, pk}) == pos[id][result]) tmp.pb(id);
if (ty == 2 && max({pi, pj, pk}) == pos[id][result]) tmp.pb(id);
if (ty == 3 && pi + pj + pk - min({pi, pj, pk}) - max({pi, pj, pk}) == pos[id][result]) tmp.pb(id);
if (ty == 4) {
int mn = 6;
for (int xp : {pi, pj, pk}) if (xp > pos[id][d]) mn = min(mn, xp);
if (mn == 6) mn = min({pi, pj, pk});
if (mn == pos[id][result]) tmp.pb(id);
}
}
all = tmp;
cur = (result == a ? cur->nxt[0] : result == b ? cur->nxt[1] : cur->nxt[2]);
}
int ans[6];
FOR (i, 0, 5) ans[i] = P[all[0]][i];
answer(ans);
}
}
我的分享就到這裡結束了,如果喜歡我的 $\text{Blog}$,歡迎追蹤!
留言
張貼留言